EnergyNews

Efficient battery could charge electric cars 60 per cent in 6 minutes

1 Mins read

Changing how battery particles are ordered speeds up charging times without affecting energy storage

lithium-ion battery that uses copper and copper nanowires to create more internal structure can charge to 60 per cent in 6 minutes, without affecting its energy storage. This more efficient battery could one day power electric cars, potentially allowing drivers to travel further without waiting as long for the vehicle to charge.

Batteries, which are largely lithium-ion, use binding agents to create a solid anode that tends to have a random distribution of particles, which leads to slower charging times.

To overcome these issues, Yao Hongbin at the University of Science and Technology of China in Hefei and his colleagues have designed a lithium-ion battery with a structured anode, the positive end of a battery.

Lithium battery anodes are typically made of graphite particles through which charge flows, with these particles generally arranged in a fairly random order. Hongbin and his team organised the particles in order of particle size and tweaked an electrode property known as porosity.

“In our design, we control the whole density in the electrode,” says Yao. “We use a higher porosity in the top [of the anode] but lower porosity in the bottom, so that the average porosity has a normal value.”

Their battery charged from zero to 60 per cent and 80 per cent in 5.6 and 11.4 minutes, respectively, while maintaining a high energy storage.

The researchers didn’t record the time to get to a 100 per cent charge. Electric car manufacturers often recommend vehicles be charged to up to 80 per cent to maintain battery longevity. A Tesla typically takes 40 minutes to an hour to get from 40 per cent to 80 per cent charge.

To organise the particles by both size and porosity, Yao and his team coated the graphite anode particles with copper and mixed in copper nanowires. The particles were then heated, cooled and compressed, setting the ordered structure.

“This natural sedimentation process is nice, however, I feel that the additional processing steps needed to coat the graphite and make the copper nanowires could add appreciable cost,” says Billy Wu at Imperial College London.

Heating and cooling the anode may also add an additional cost to what is traditionally a cheaper battery component, says Wu.

Source:newscientist.com | Alex Wilkins

Related posts
News

New data reveals climate change might be more rapid than predicted

3 Mins read
About 30 massive, intricate computer networks serve the scientists who stand at the forefront of climate change research. Each network runs a…
News

Ghana to benefit from climate change intervention program.Ghana to benefit from climate change intervention program.

1 Mins read
The African Development Bank (AFDB) has partnered with the Government of Finland to launch a €4 million Africa Circular Economy Facility (ACEF),…
News

United Airlines no longer accepts credit or debit cards on board

4 Mins read
Like many people, I’ve begun flying again after taking a pandemic-induced break for much of 2020 and 2021. I recently flew on…

Leave a Reply

Your email address will not be published.